Threema protocol analysis

Jan Ahrens

E-mail jan.ahrens@gmail.com
PGP key 3762 1152 E099 AB27 04E8
3FD1 B911 E6A2 2B4F 3BSF

2014-03-22

Abstract

Threema is a commercial mobile messaging application developed by the Swiss-based
company Kasper Systems GmbH. Its popularity is based on the promise that each message
is transferred using end-to-end encryption. While claiming to use the open-source crypto-
graphic library NaCl, the details of the used protocol are closed and can not be independently
reviewed and verified. The Validation Logging functionality provided by Threema does not
prove that logged messages are exchanged with the server.

In this paper I will describe the Threema protocol, with the intention of enabling an
independent review. This paper does not judge whether there are weaknesses in the protocol
or the application itself.

The results are based on the implementation used by the Threema Android application
version 1.3. Neither its keys nor servers are included in this paper. They are sold by Kasper
System GmbH in form of the Threema binary.

http://pool.sks-keyservers.net/pks/lookup?op=get&search=0xB911E6A22B4F3B5F
http://pool.sks-keyservers.net/pks/lookup?op=get&search=0xB911E6A22B4F3B5F
https://threema.ch/en/
http://www.kaspersystems.ch/
https://threema.ch/en/faq.html#why_secure
https://threema.ch/validation/

Contents

1 Introduction 2
2 The NaCl library 2
3 Short- and long-term keys 3
4 Handshake 3
4.1 Client Hello o o 4
4.2 Server Hello e 4
4.3 Authentication 4
4.4 Acknowledgment 5
5 Exchanging data with the server 5
5.1 General format of a data packet oL 6
5.2 Sending and receiving messages b e e e 6
6 Decrypt client-server communication 8
7 Summary 8

1 Introduction

Threema is a commercial mobile messaging application for Android and iOS. Its features include
chatting with contacts, group conversations and sharing images. All communication is said to
be end-to-end encrypted using a keypair generated by the application on its first launch.

Threema is sold by the Swiss-based company Kasper Systems GmbH on its website, through
the Google Play Store and the Apple App Store. Threema’s source code is closed and can not be
reviewed without the agreement of its authors. The application includes a Validation Logging
feature that can be used to log the in- and outgoing messages. This feature logs the message
bodies, but not all the data that is exchanged with the server. There is no way to prove that
the message that is being logged correlates to data that is being sent by the application. To
enable an independent review I will describe the details of the custom protocol, that Threema is
using, in this paper. The results are based on an analysis of the Threema Android application
version 1.3.

This paper begins with an introduction of the used cryptography library in Section 2 and
continues with an explanation of the used keys in Section 3. Before data can be exchanged
with the Threema server, a connection has to be established. This handshake will be described
in Section 4. After a successful handshake server and client can exchange data. The different
kinds of messages are discussed in Section 5. Section 6 will give some advice on how to verify
the described protocol by looking at the traffic generated by the application.

2 The NaCl library

The protocol used by Threema is based on the NaCl library. On its project page NaCl is being
described as:

NaCl (pronounced “salt”) is a new easy-to-use high-speed software library for net-
work communication, encryption, decryption, signatures, etc. NaCl’s goal is to
provide all of the core operations needed to build higher-level cryptographic tools.

Revision: dde49e8 (2014-03-22) 2

https://threema.ch/en
https://threema.ch/validation/
http://nacl.cr.yp.to/
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

NaCl provides the crypto_box function, among other primitives, that can be used to exchange
authenticated messages between a sender and a recipient. Given a message m, the ciphertext ¢
is produced by using the recipient’s public key PK,, the senders secret key SK and a nonce n.

¢ = crypto_box(m,n, PK,, SK) (1)

The recipient can decipher this message using the crypto_box_open function with his secret
key SK,, the senders public key PK 4 and the nonce n used to create the ciphertext.

m = crypto_box_open(c,n, PK ¢, SK) (2)

In contrast to traditional public-key cryptosystems, like RSA, a ciphertext generated using
the crypto_box function can not only be deciphered with the recipient’s secret key. It can also
be deciphered using the secret key of the sender. This property is the result of crypto_box using
elliptic curve Diffie-Hellmann internally to derive a shared secret between both keypairs.

3 Short- and long-term keys

Each Threema client generates a keypair on its first launch. This keypair is called the long-term
keypair and consists of a public key LPK . and a secret key LSK .. The long-term public key is
linked to an 8 byte username by sending it to the Threema server!.

The long-term public key has to be exchanged with other Threema users. To send a message
the client has to know the username and associated long-term public key of the recipient. The
details will be discussed in Section 5.2.

Whenever a Threema client wants to establish a connection with the server it will generate
another keypair, used only for a short amount of time. This keypair is called the short-term
keypair and consists of the short-term public key SPK . and the short-term secret key SSK.

The details of this handshake are explained in the next section.

4 Handshake

The protocol is based on TCP using the client-server model. On top of a TCP handshake, the
client has to perform a cryptographic handshake with the server before it can send messages.
This handshake is similar to the one in the CurveCP protocol. During the handshake, client
and server will exchange, and agree on, the following data:

e Client short-term public key: SPK . € {0..255}32

e Server short-term public key: SPK, € {0..255}32

Client nonce prefix: NP, € {0..255}16
e Server nonce prefix: NP € {0..255}16
e Client username: u € {A..Z,0..9}8

e Client system data, such as the Threema version, platform and the Java runtime

The nonce prefix is used together with an 8 byte counter to generate a unique 24 byte nonce
for every message®. I will be using the notation n,; = nonce(NPy, i) to express that the nonce
ng; is based on the nonce prefix NP, and the counter value 7.

!This is done using the Threema REST API. The REST API is not a direct part of the communication
protocol and will not be discussed in this paper.
2This method is explained in this Stack Overflow discussion.

Revision: dde49e8 (2014-03-22) 3

https://en.wikipedia.org/wiki/ECDH
http://curvecp.org/index.html
https://stackoverflow.com/questions/13663604/questions-about-the-nacl-crypto-library/13663945#13663945
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

4.1 Client Hello

The connection to the server is initialized by the client sending the Client Hello packet (Figure 1).
Before sending this packet, the client generates a short-term keypair using the crypto_box_keypair
function from the NaCl library. It will also generate a 16 byte random nonce prefix NP,, that
is used to generate unique nonces later on.

0 15

client short-term public key

32 byte SPK,

client nonce prefix NP,

Figure 1: The Client Hello packet

4.2 Server Hello

After receiving the Client Hello, the server will respond with a Server Hello packet (Figure 2).
Before sending this packet, it also generates a short-term keypair and a 16 byte random nonce
prefix NPs.

server nonce prefix NP

64 byte ciphertext,,

Figure 2: The Server Hello packet

Along with the nonce prefix NP the server will send the ciphertext,. The contents of that
ciphertext are the server’s short-term public key SPK ¢ and the client’s nonce prefix NP.. The
client’s nonce prefix is included to confirm that the server received to correct one. Because the
client does not yet know about the server’s short-term key, the server’s long-term secret key has
to be used to create the ciphertext (Equation 3).

ciphertext, = crypto_bor(SPK s + NP, nonce(NPs,1), SPK ., LSK y) (3)

4.3 Authentication

When the server has introduced itself with the Server Hello packet, the client sends the encrypted
authentication packet (Figure 3 and Figure 4). Its purpose is to authenticate the user, confirm
the server’s nonce prefix and send some data about the client’s system, like the used Threema
version. The authentication packet is the first packet that is being encrypted using both short-
term keys. (Equation 4).

Revision: dde49e8 (2014-03-22) 4

http://nacl.cr.yp.to/box.html
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

ciphertext,

144 byte \

Figure 3: The Authentication packet. It is fully encrypted with the short-term keys.

0 7 8 15 16 23 24 32
username u system data
system data
Y (COIlt) server nonce preﬁx NP random_nonce
128 byte :
random _nonce (cont.) ciphertext,

ciphertext, (cont.)

Figure 4: Structure of the authentication_data that is being encrypted as ciphertext,

ciphertext, = crypto_boz(authentication_data, nonce(NP.,1), SPK 5, SSK) (4)

With the ciphertext, inside authentication_data (Equation 5) the client is verifying that it
possesses the private key LSK . that belongs to the long-term public key LPK . and is linked to
the username u.

ciphertext, = crypto_box(SPK ., random_nonce, LPK s, LSK) (5)

4.4 Acknowledgment

In the last step of the handshake, the server acknowledges that the authentication data provided
by the client is valid. The 32 byte packet is fully encrypted and can be decrypted as shown
in equation 6. Its content is meaningless and contains only zeros. When the packet can be
decrypted, the handshake is completed and a connection with the Threema server has been
established.

messagey = crypto_box_open(ciphertexty, nonce(NPs,2), SPK 5, SSK) (6)

5 Exchanging data with the server

After the handshake is completed, the client and the server are allowed to exchange data. The
data is structured into different kinds of data packets that will be described in the next section.
Whenever a number is used in any of the data packets, it will be encoded using the little-
endian byte order. For example the unsigned short integer 23421¢ is encoded as 092614 using
big-endian and as 2609 using little-endian. Since big-endian is the standard format on most
client platforms, numbers have to be converted between little- and big-endian in most of the
cases.

Revision: dde49e8 (2014-03-22) 5

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Integer_%28computer_science%29#Short_integer
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

5.1 General format of a data packet

A data packet is the general format for data exchanged between the server and the client. Each
data packet is prefixed with a two byte length field. It contains an unsigned short integer
encoded as little-endian. After reading those two bytes, the receiver knows how many bytes it
has to read from the sender in total.

Each data packet is encrypted and can be decrypted by using the appropriate short-term
keys for the client and server. Depending on who sent packet, the next nonce generated by the
server’s or the client’s nonce prefix has to be used.

Type Description
0x01 Sending message
0x02 Delivering message

0x81 | Server Acknowledgment
0x82 | Client Acknowledgment

’ 0xd0 \ Connection established

Table 1: Data packet types

The first four bytes of the decrypted data packet are used to encode its type. Table 1 shows
some of the defined types. Most data packets will contain additional information besides its
type identifier. One exception is the data packet 0xd0. It will be sent by the server after the
connection is successfully established and all queued messages have been sent to the client. It
is used by the client to know when the user can start sending messages. The meaning of the
remaining data packet types will be explained in the following section.

5.2 Sending and receiving messages

The core purpose of the Threema protocol is to exchange messages with other users. Data
packets with the type 0x01 and 0x02 are used for this (Figure 7). The difference between the
two types is that 0x01 is used for outgoing and 0x02 is used for incoming messages. Messages
are used for different purposes in the Threema protocol. In order to differentiate between the
various kinds of messages, each message starts with a one byte message type identifier. Table 2
lists some of them.

Type Description

0x01 Text message
0x80 | Message delivery receipt
0x90 | User typing notification

Table 2: Message types used inside the data packet 0x01 and 0x02

Each Threema message has a unique identifier in order to be referenced by the server and
by the recipient. Figure 5 shows an example of a message exchange between two users and the
server: After a user composed a message it will be sent to the server. The server will acknowledge
that it has received the message. When the message has been delivered to the recipient, its
delivery will be acknowledged, by generating a new message containing the delivery receipt
(0x80).

Acknowledgments are data packets sent after the client or server have received a message
packet. Each acknowledgment packet includes the related message id and the sender of the
message. The identifier 0x81 is used by the server to acknowledge that it has queued a message.
The client uses the identifier 0x82 to acknowledge that is has received one. If the server does
not receive an acknowledgment, it will attempt to re-transmit the message. The same applies

Revision: dde49e8 (2014-03-22) 6

https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

Client, Server Clienty

Send m1: “Hello”

Acknowledgment mq

Deliver my

Acknowledgment mq

Send my: receipt for my

Acknowledgment mo

Deliver mo

Acknowledgment mso

Figure 5: Sending a message (mq) and confirming its delivery by the recipient (mg)

to the client if the server does not acknowledge the queuing of a message. Figure 6 shows the
structure of an acknowledgment packet.
0 3 4 1112 19
0x81
0x82

sender identity| message id

Figure 6: Acknowledgment packet

The structure of the message packet is show in Figure 7. The client will used 0x01 as a
message identifier to send a message and the server will use 0x02 to deliver a message. Sender
and recipient are filled with the 8 byte identity of the related user. The message id is randomly
generated. The time field encodes the current UTC time as an unsigned integer in little-endian
byte order. The meaning of the four bytes in the dunno field is not yet known. It contains zeros
in most cases. A fully random nonce will be used to encrypt the actual message content.

The server might know about the contents of a message by looking at its length. To prevent
this each message will be extended using PKCS7 padding before its encrypted. For example the
“user starts typing” message has always the same length of four bytes (9000). Using PKCS7
padding with a random number of padding bytes (i.e. 5 bytes), the message becomes longer
(90000505050505) and the content is no longer guessable by looking at its ciphertext.

0 3 4 1112 19 20 27 28 31
0x01 sender recipient message id time
0x02

dunno | pubkey owner padding
pad. nonce

ciphertext,, (variable length)

Figure 7: A message packet

Revision: dde49e8 (2014-03-22) 7

https://en.wikipedia.org/wiki/Padding_%28cryptography%29#PKCS7
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

6 Decrypt client-server communication

If you want to verify the protocol described in this paper, you need to know the client’s short-
term secret key SSK ., the server’s short-term public key SPK; as well as the nonce prefixes
NP. and NP,. In order to calculate the counter values used to generate nonces by the client
and the server you either need to have all exchanged packets or guess the correct value by using
brute force.

If you have all exchanged packets, another way of deciphering the transport encryption is
to use the server’s long-term public key LPK ; together with the client’s short-term secret key
SSK .. Using both keys it is possible to decipher the whole handshake and extract all session
parameters.

The method used to gain these keys during this analysis was to modify the app and include
additional logging output.

Once you removed the transport encryption used between client and server you can read the
payload of every message (see section 5.2 for an example). The Threema Validation Logging
feature and the related programs can be used to compare the logged data and the intercepted
message contents then.

7 Summary

I did not describe the protocol in every possible detail and instead focused on providing enough
information to understand the basics. I hope this analysis is useful to you and would love to
hear your thoughts.

I did this analysis out of my private interest. My intention in writing this paper was to
improve the trust in Threema. I invite you to judge about its safety on your own.

If you found a mistake or have any comments about this paper I’d be happy if you contact
me via email®. Please contact Kasper Systems GmbH directly if you have found any (potential)
weaknesses in their protocol.

3My E-mail address and PGP key are on the first page. Please don’t contact me regarding the extraction of
Threema keys and servers. As already mentioned they’re not part of this paper and are sold by Kasper Systems
GmbH.

Revision: dde49e8 (2014-03-22) 8

https://threema.ch/validation/
https://threema.ch/en/contact.html
https://github.com/JanAhrens/threema-protocol-analysis/commit/dde49e87525c0ad23ea902d2809de178af05af4a

	Introduction
	The NaCl library
	Short- and long-term keys
	Handshake
	Client Hello
	Server Hello
	Authentication
	Acknowledgment

	Exchanging data with the server
	General format of a data packet
	Sending and receiving messages

	Decrypt client-server communication
	Summary

